Graphs Using Intercepts
x-intercept - the x-coordinate of a point where the graph crosses the x-axis; where $y=0$.
y-intercept - the y-coordinate of a point where the graph crosses the y-axis; where $x=0$.

Graphs Using Intercepts
(a) Use intercepts to graph the equation $4 x+3 y=12$.

Graphs Using Intercepts
To graph using intercepts:
1.) Find the x-intercept by replacing y with 0 . (show this work!) Graph that point.
2.) Find the y-intercept by replacing x with 0 . (show this work!)Graph that point.
3.) Draw the line through these points

Graphs Using Intercepts
(b) Use intercepts to graph the equation $2 x+5 y=-10$
WORK:

c)

Write an equation of the line that is parallel to

aUde slope-intercept form.

$$
\begin{gathered}
m=-1 \quad(-3,6) \\
y-y_{1}=m(x-x \\
y-6=-1(x-3) \\
y-6=-x-3 \\
\frac{y}{4}=-3 \\
y=-x+3
\end{gathered}
$$

d)

oUse slope-intercept form.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-6=-2(x-3) \leftarrow \text { pt slope form }
$$

$$
\begin{aligned}
& y-6=-2 x-6 \\
& +6
\end{aligned}
$$

$$
y=-2 x
$$

e) Write the equation of the line, in standard form, perpendicular to $4 x-5 y=21$ passing through (4,-6).
find slope $\int_{-4 x}^{4 x}-5 y=21_{-4 x}$
$\frac{-5 y}{-5}=\frac{-4 x}{-5}+\frac{21}{-5}$
$m=\frac{4}{5}$
$y=\frac{4}{5} x-\frac{21}{5}$
$\left.m_{1}=-\frac{5}{4} \quad(x, y)\right\}$
Slope $=$ slope $(4,-6)\}$ slope
$\frac{-4+6}{x-4}$
$4(y+6)=-5(x-4)$
$4 y+24=-5 x+20$
$+5 x+24+5 x-24$
$5 x+4 y=-4$
$+5 x-24+5 x$
$5 x+4 y=-4$

